
Future	 Technologies	 in	
Compu3ng	 at	 Los	 Alamos	

IR
Task

IR
Task Task

IR
Task Task

IR
Task

Task Queue

Scheduler

JIT

Front-Ends

Middle Stage
Low-Level

IR

Architecture
Independent
Analysis &

Optimization

Back-End

Targeted
Analysis,

Optimization &
Code Generation

Processor

Conventional
Language

Language
Specific

Transformation

Extended
Conventional

Language

Language
Specific

Transformation

DSL

Language
Specific

Transformation

….

Lower to
IR

Lower to
IR

Lower to
IR

Dynamic
Task

Allocation
and Scheduling

Runtime

 LL
VM

 +
 E

nh
an

ce
m

en
ts

Compiler Design

Runtime

Core

Memory
Memory

Core

Memory
Memory

Accelerator

Memory
Memory

MemoryTask

Historically application performance has improved with technological advancements in
processor and architecture design and increasing transistor count, all without burden on the
programmer. Improvements have included increasing clock rates, increasing instruction-level
parallelism, deeper cache hierarchies and larger caches, and automatic vectorizing for SIMD
parallelism. However, as limits to instruction-level parallelism are reached and the memory wall
becomes an increasingly greater performance bottleneck, systems are becoming increasingly
parallel.

These changes have imposed a significant burden on the programmer who must explicitly code
for both shared- and distributed-memory parallelism, and additionally for discrete accelerator
architectures. General-purpose, sequential programming language systems have evolved only
slightly to accommodate these challenges. Node and system level parallelism is most
commonly exploited using runtime libraries such as pthreads and MPI. GPUs are explicitly
programmed with OpenCL or CUDA. The result is that to achieve the potential performance of
current and future systems, applications have become an extremely complicated mix of
paradigms and languages that suffer from a lack of portability/compatibility across the range of
architectures.

There are at least two ways this growing problem may be addressed. One is to augment
existing languages, or develop entirely new ones, in which parallelism is implicit and its actual
implementation on particular hardware is the responsibility of the compiler and runtime.
Another is to better modularize and isolate application components that employ different
programming languages and paradigms such that porting to new architectures requires a
rewrite or recompile of only the architecture-specific components without requiring changes to
the rest of the application.

We are exploring both of these approaches with the goal of synergistically combining their
strengths. Using the first approach we are developing various mechanisms and techniques for
supporting multiple domain-specific languages (DSLs) and language extensions within a single
compiler framework (ref compiler design figure). To support this part of the work we are heavily
leveraging LLVM (http://llvm.org), a modern compiler framework and infrastructure specifically
designed to provide modularity and extensibility at all stages of the compiler toolchain, and the
associated Clang C/C++ front-end (http://clang.llvm.org). Here the outputs may be classic
binary executables, or a mixture of static and just-in-time (JIT) compilable components that
represent the discrete tasks that comprise the application. In the latter case, using the second
approach, we are designing a runtime system that performs three main functions: the
scheduling of tasks on appropriate processing resources, the scheduling of data access and
motion as needed by these tasks, and just-in-time compilation, including dynamic optimizations,
of task code as needed by scheduling constraints and resource availability (ref runtime figure).

Leveraging a Common Intermediate Representation for
Programming Emerging Architectures
Pat McCormick, Kei Davis, Dean Pritchard, and Nick Moss

Open-Source Compilers and Runtimes for Emerging Computer Architectures	

New architectures require software that explicitly targets shared and distribute-memory
parallelism and deep memory hierarchies.	

We are addressing these challenges by developing techniques for supporting multiple Domain
Specific Languages and language extensions in a single compiler framework, together with a
runtime system that performs three critical functions: scheduling of tasks on processing
resources, scheduling data access and motion as needed by the tasks, and just-in-time
compilation for dynamic optimization of task code to match scheduling constraints.	

Contact: Patrick McCormick, pat@lanl.gov	

Sponsor: DOE NNSA/ASC and ASCR	

Custom Hardware for Scientists: OpenCL to FPGA	

Field-Programmable Gate Arrays (FPGAs) offer excellent performance for custom hardware designs
with high-parallelism and I/O density and superior energy efficiency. They have been used widely at
Los Alamos in application-specific contexts such as space-based computing. The high engineering
effort to achieve performance, and limited flexibility for minor changes, however, have meant they
have had little impact in general-purpose high-performance scientific computing.	

A promising approach for overcoming these drawbacks is the use of direct OpenCL to FPGA
hardware compilation. OpenCL is an open standard for cross-platform parallel programming that
allows complex kernels to be prototyped on emerging architectures (such as GPUs), and also to be
transitioned from traditional architectures to FPGAs. Current applications include N-body force
calculations, multigrid solvers, and hydrodynamics with adaptive mesh refinement.	

Contact: Zachary Baker, zbaker@lanl.gov	

Sponsor: DOE NNSA/ASC	

MBLite Core
Accelerator Core

Thread

Data

HW Ready−to−Run

Queue

thread switch request
thread

Accelerator Core

Result FIFO

Result FIFO

Studying Application Resilience Through Software Fault Injection	

Shrinking processor technology, growing supercomputer size, and power-conserving near-
threshold-voltage techniques all pose major challenges for high-performance computer system
reliability. We are exploring the implications through software fault injection based upon a
robust processor emulator virtual machine (QEMU). The virtual machines are run in batch
mode on supercomputers with external control of fault injection in specific locations of an
application. We can target specific applications, specific functions of that application, and inject
faults in extremely configurable ways. Then, we observe how the application responds to this
fault and explore application resilience techniques to address vulnerabilities.	

Contact: Nathan DeBardeleben, ndebard@lanl.gov 	

Sponsor: DOE NNSA/ASC and DOD	

Probabilistic Computing for New Computer Architectures	

Probabilistic computing encompasses probabilistic hardware or randomized software methods, or both.
Probabilistic computation either does not give a deterministic result, or else calculates along non-
deterministic paths to reach a deterministic result.	

Probabilistic computing is both a challenge and an opportunity: a challenge, since reductions in feature size
are introducing increasing non-determinism, and an opportunity to explore a richer space of algorithms, and
since we may be able to reduce power consumption by certain probabilistic hardware methods. 	

We are currently researching probabilistic computational methods on emerging architectures, and have
achieved speedups over traditional methods on basic algorithms.	

Contact: Laura Monroe, lmonroe@lanl.gov	

Sponsor: LANL LDRD and UC Fees Program	

Extreme-Scale Burst-Buffer Storage Systems	

Large high-performance computing (HPC) systems push parallel file systems to extremes in
aggregate I/O bandwidth, and numbers of clients. Current HPC applications generate I/O in
bursts driven by algorithmic and checkpoint/restart needs, so an attractive approach for
meeting future I/O needs is to adopt a tiered storage system design that integrates layers of
solid-state burst buffers to absorb application requests and deliver a lower-bandwidth, sustained
load to the base file system. Los Alamos is leading efforts to develop burst buffer designs,
characterize their performance and benefits, and to develop software interfaces to isolate
application developers from hardware implementation details. In many attractive designs,
processors are integrated into the burst buffer, offering tantalizing opportunities to move
computation into the I/O stream for in transit analysis, indexing, and data reduction. The
challenges of software and scheduling for such systems are being actively explored in a number
of Los Alamos’ projects.	

Contacts: Gary Grider, ggrider@lanl.gov; Jonathan Woodring, woodring@lanl.gov	

Sponsor: DOE NNSA/ASC and LANL LDRD	

Above: New data-analysis workflows including in
situ and in transit methods are well-suited to burst-
buffer file systems	

Left: An example of a probabilistic selection algorithm being
examined in our advanced architecture research	

Above: A schematic representation of an FPGA
design for high-performance computing	

LA-UR-13-27525	

